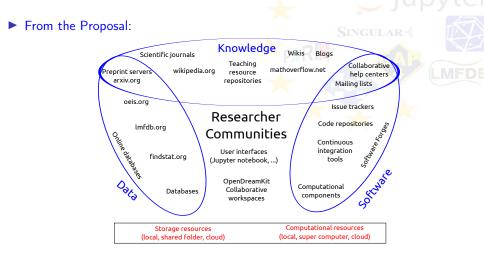
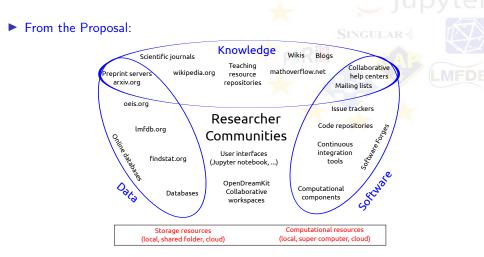
OpenDreamKit Work Package 6 Data/Knowledge/Software-Bases

> Michael Kohlhase FAU Erlangen-Nürnberg http://kwarc.info/kohlhase

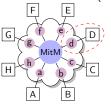

OpenDreamKit Final Review, Luxembourg, October 30. 2019



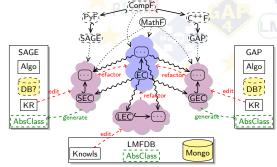
Background: WP6 (Data/Knowledge/Software-Bases)

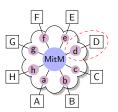
and the second second

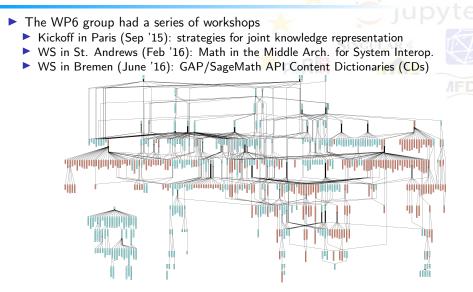

Background: WP6 (Data/Knowledge/Software-Bases)


 Proposed Focus: Supply this data to VRE components in an integrated fashion programmatically

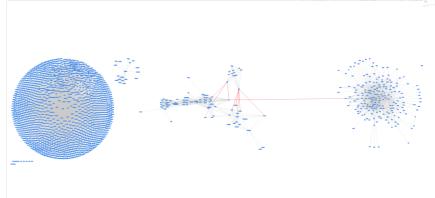
The WP6 group had a series of workshops
 Kickoff in Paris (Sep '15): strategies for joint knowledge representation




- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.



- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - ▶ WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.



- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - ▶ WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology

The WP6 group had a series of workshops

- ► Kickoff in Paris (Sep '15): strategies for joint knowledge representation
- ▶ WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
- WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
- WS in Berlin (Feb '17): Math-in-the-Middle Ontology
- WS in Oslo (Aug '17): Active, Structured Documents

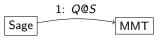
Mass-energy equival

The energy E is the quantita transferred to an object in order the object. The mass m is both and a measure of its resistance t state of motion) when a net force

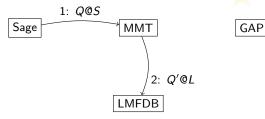
The speed of light in vacuum universal, physical constant inpo Its exact value is 299,79 (approximately 300,000 km/s (18

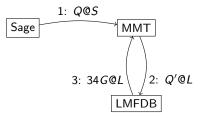
Combining these quantities we formula as $E = mc^2$.

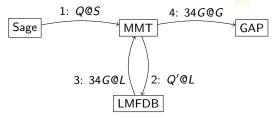
n	[1]:	theory MassEnergyEquivalence
		theory MassEnergyEquivalence
n	[2]:	include ?MEC
		include http://cds.omdoc.org/jupyter/baff5bea-509
n	[3]:	active computation m,c mc ²
		(mc ²)
		m
		c
		Simplify
		Click simplify to start

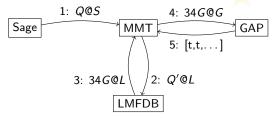

- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems

- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems

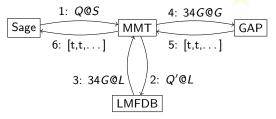



- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems

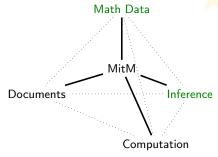

- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems


GAP

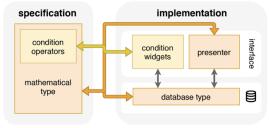
- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems



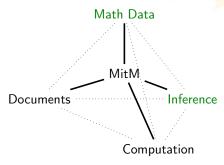
- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems



- The WP6 group had a series of workshops
 - Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems



- The WP6 group had a series of workshops
 Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems
 - WS at FLoC Oxford (July '18): Aspects of Modular Knowledge


- The WP6 group had a series of workshops
 - ▶ Kickoff in Paris (Sep '15): strategies for joint knowledge representation
 - WS in St. Andrews (Feb '16): Math in the Middle Arch. for System Interop.
 - WS in Bremen (June '16): GAP/SageMath API Content Dictionaries (CDs)
 - WS in Berlin (Feb '17): Math-in-the-Middle Ontology
 - WS in Oslo (Aug '17): Active, Structured Documents
 - WS in Cernay (May '18): Interfacing Systems
 - WS at FLoC Oxford (July '18): Aspects of Modular Knowledge
 - WS in Cernay (August '19): Math Data Workshop

WP6 Focus in the Final Review Period

- Inference \rightsquigarrow the Isabelle Library and MitM
- Mathematical Data
 - (Semantic) Interoperability with Mathematical Data
 - Strengthening Organization via stronger Schemata
 - Collecting mathematical Data during computation
- Data and Inference are a central part of "doing mathematics".

(Math-in-the-Middle) (LMFDB) (Persistent Memoization)

2 Extending OpenDreamKit (MitM) to Inference

Integrating MitM with Theorem Proving – Isabelle Library

- New Task 6.11: Isabelle Case Study
- Idea: Math uses a mixture of computation and and proving.
- Isabelle: One of the most mature and widely used proof assistants
 - 82 out of Wiedijk's top 100 math theorems formally proved
 - L4 microkernel verification: $> 10^5$ loc
 - Archive of Formal Proof
 - >300 authors, >500 articles, $>10^5$ lemmas, $>10^6$ loc
- Subcontract: Collaboration with Makarius Wenzel (main Isabelle developer) Serialize Isabelle libraries in exchange formats (OMDoc/MMT) ($\approx 6 + 4$ PM)
 - input
 - ▶ > 10⁴ theories/locales
 - ightarrow > 10⁶ definitions and theorems
 - 135 MB uncompressed text files
 - output (without proofs)
 - 206 MB compressed OMDoc (37.5 GB uncompressed)
 - > 10⁸ RDF triples
 - run time: 12 hours with 8 CPU cores, 50 GB memory

(last Amendment)

3 MathHub Data – your dataset, but FAIR

FAIR Research Data: The Next Big Thing

- Definition 3.1. Research data is recorded factual material commonly retained by and accepted in the scientific community as necessary to validate research findings.
- Background: Virtually all scientific funding agencies now require some kind of research data strategy
 (tendency: getting stricter)

FAIR Research Data: The Next Big Thing

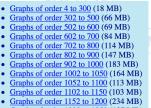
- Definition 3.1. Research data is recorded factual material commonly retained by and accepted in the scientific community as necessary to validate research findings.
- Background: Virtually all scientific funding agencies now require some kind of research data strategy
 (tendency: getting stricter)
- Definition 3.2 (Gold Standard Criteria). Research data has to be FAIR, i.e.
 - Findable: easy to identify and find for both humans and computers, e.g. with metadata that facilitate searching for specific datasets,
 - Accessible: stored for long term so that they can easily be accessed and/or downloaded with well-defined access conditions, whether at the level of metadata, or at the level of the actual data,
 - Interoperable: ready to be combined with other datasets by humans or computers, without ambiguities in the meanings of terms and values,
 - Reusable: ready to be used for future research and to be further processed using computational methods.

FAIR Research Data: The Next Big Thing

- Definition 3.1. Research data is recorded factual material commonly retained by and accepted in the scientific community as necessary to validate research findings.
- Background: Virtually all scientific funding agencies now require some kind of research data strategy
 (tendency: getting stricter)
- Definition 3.2 (Gold Standard Criteria). Research data has to be FAIR, i.e.
 - Findable: easy to identify and find for both humans and computers, e.g. with metadata that facilitate searching for specific datasets,
 - Accessible: stored for long term so that they can easily be accessed and/or downloaded with well-defined access conditions, whether at the level of metadata, or at the level of the actual data,
 - Interoperable: ready to be combined with other datasets by humans or computers, without ambiguities in the meanings of terms and values,
 - Reusable: ready to be used for future research and to be further processed using computational methods.

Questions: What does this mean for mathematics, in particular

- What is mathematical research data?
 - How can we make mathematical data FAIR?



The Current Reality in Mathematical Practice

80% of the datasets are not FAIR.

NJI C	V	E	Tr	W?	B ?	A MANAGER MAY	VS VS	ds	#STO	gi	
C4[5.1]	5	10	DT	W	NB	120	24	6	0	3	
C4[.6.1.]	6	12	DT	U	NB	48 1583 1583 158	853555	25355	1, 15	3	
C4[8.1]	8	16	DT	U	Bip	(2^7)(3^2)	144	36	2	4	
C4[9.1]	9	18	DT	W	NB	72 (152 5 (152 5 (152)	8025503	2 5 2 5 5 5	1 6	3	
C4[10,1]	10	20	DT	U	NB	320 Grad Grad Gr.	32	8	1 - 2	4	
C4[10.2]	10	20	DT	W	Bip	240	24 20	6.080.05	1.05	4	
C4[12,1]	12	24	DT	U	Bip	768	64	16	3	4	
C4[12.2]	12	24	DT	W	NB	48-282-282-28	4282528	1,287,28	2	3	
C4[13:1]	13	26	DT	W	NB	52	4.303.3	15,7075,7	0	4	
C4[14,1]	14	28	DT	U	NB	(2^8)(7^1)	128	32	1 2	4	
C4[14.2]	14	28	DT	W	Bip	336	24	6	0	4	
C4[15.1]	15	30	DT	W	NB	60 19 94 19 94 19 9	4-5-1 2-5	15-54 5-	2	4	
C4[15,2]	15	30	DT	W	NB	1204 No. 4 No. 4 No.	8/ No. 4/ N	24 81 4	0.4	3	
C4[16.1]	16	32	DT	U	Bip	(2^12)	256	64	3	4	
C4[16.2]	16	32	DT	W	Bip	3844 253 24 253 253	24	6	2 %	4	
C4[17.1]	17	34	DT	W	NB	68	472273	153053	0	4	
C4[18.1]	18	36	DT	U	NB	(2^10)(3^2)	512	128	1 %	4	
C4[18.2]	18	36	DT	W	Bip	144 6	8 3 1 3 3	2	2	4	
C4[20.1]	20	40	DT	U	Bip	(2^12)(5^1)	(2^10)	256	3	4	
C4[20.2]	20	40	DT	W	Bip	80	4 971 - 9	1. 977-9	1-2	4	
C4[20.3]	20	40	DT	W	NB	320	16	4.085.05	1.55	4	
C4[20.4]	20	40	SS	U	Bip	(2^8)(3^1)(5^1)	384	96	0	4	
C4[21.1]	21	42	DT	W	NB	84-287-287-28	4282528	1,282,22	2	4	
C4[21.2]	21	42	DT	W	NB	336	16	4	2	3	

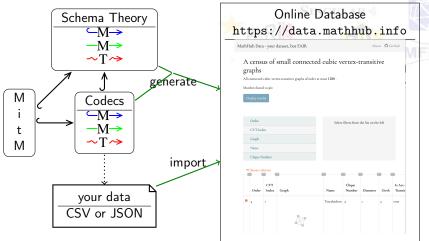
(here are three silos)

- Graphs of order 1202 to 1250 (137 MB)
- Graphs of order 1252 to 1280 (131 MB)

CubioVT:=[[] : i in [1..1280]);

 $\texttt{CubicVT}\{4,1\} \ := \ \texttt{Graph}{44} \ \mid \ \{\{1,3\}, \ \{1,4\}, \ \{2,4\}, \ \{2,3\}, \ \{1,2\}, \ \{3,4\}\}{>_1}$

 $\label{eq:cubicVT[6,1] := Graphe6 ~ [~ \{\{2,5\},~ \{1,3\},~ \{2,6\},~ \{1,4\},~ \{3,5\},~ \{4,6\},~ \{2,3\},~ \{1,4\},~ \{4,5\}\} >)$

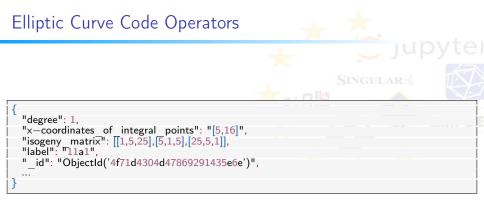

CubicVT[10,1] := Graph<10 | ((4,6), (3,5), (2,6), (4,8), (5,6), (3,4), (1,5), (1,10), (2,10), (7,9), (3,7), (9,10), (1,7), (2,8), (8,9)>)

Idea: Provide semantic hosting of all of these.

MathHub Data in a Nutshell

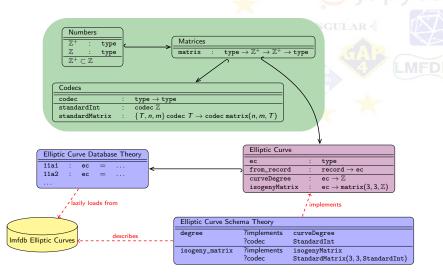
MathHub Data:

- Community Resource: MitM and Codecs,
- Dataset: data in JSON, provenance, and schema theory.


Codecs: Encoding and Decoding Database Values

Definition 3.3 (Codec). A codec consists of two functions that translate between semantic types and realized types.

Codecs	
$\texttt{codec}:\texttt{type}\to\texttt{type}$	Montrab
$StandardPos: codec\ \mathbb{Z}^+$	JSON number if <mark>sm</mark> all enough, els <mark>e J</mark> SON
	string of decimal expansion
$StandardNat:$ codec $\mathbb N$	
StandardInt :codec $\mathbb Z$	
IntAsArray :codec $\mathbb Z$	JSON List of Numbers
IntAsString :codec $\mathbb Z$	JSON String of decimal expansion
$StandardBool:codec\ \mathbb{B}$	JSON Booleans
$BoolAsInt:$ codec $\mathbb B$	JSON Numbers 0 or 1
StandardString :codec $\mathbb S$	JSON Strings


StandardInt decodes 1 into the float 1, but 2⁵⁴ into the string "18014398509481984"

Matrix in the isogeny_matrix field

Our approach: Virtual Theories

MathHub Data (MHD) State of Play

First working prototype since August 2019	(https://data.mathhub.info)
Six datasets provided by the community	(more in the pipeline)
 Graphs, Maniplexes, Polyhedra, Additive Bases together ~ 13M Math Objects, 10 to 20 properties 	
Mathematical variety sufficient to validate the	e system desig <mark>n</mark> .
Wow: The DB researchers are very interested objects)	in the DB aspects (complex
Combinatorics community is very interested	(Math Data WS \sim 2020)
Future: Scaling, Services, Community Buildin	g
 Dataset submission process (me Working towards a "Journal of Mathematical I Semantic internal references via views. 	etadata, descriptions, provenance,) Data" based on MHD

Come to the MathHub Data Demo

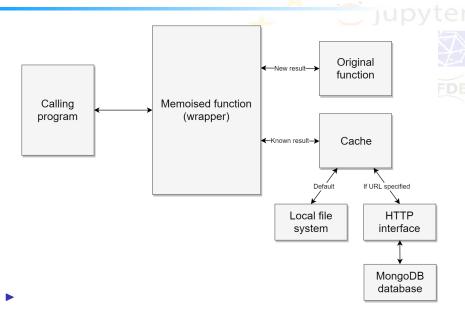
your dataset, but FAIR											About O Gir	
A census of small	Available conditions		e conditior									
connected cubic	Order ®	Orde	rr<50	1								
vertex-transitive	CVT Index 🕫	Cliq	ue Number>:	=2			1					
graphs	Graph ⁽¹⁾											
All connected cubic vertex-transitive	Name ®											
graphs of order at most 1280 .	Clique Number 🤨											
This dataset has 111360 objects.												
Matches found: 164												
Ø More about this dataset												
Display results												
Super Cours												
		-	-	-				ls	Is			ls
Order Index 0 0 0 Graph 0	Name [®]		Diameter 🖲	Girth 🔊	Is Are- Transitive	Is Bipartite 3	ls Cayley 3	Distance Regular 😗	Distance Transitive	Is Edge- Transitive 😗	Is Hamiltonian 😗	Partia Cube
	Tetrahedron			2	true	false	true	truc	true	true	truc	false
9 4 1						TRISC	true	true	tiue	titte	crue	

4 Persistent Memoization

Persistent Memoization in Python and GAP

What is memoisation?

- Store program results in a permanent cache when they are computed
- Retrieve these results from the cache later instead of recomputing
- Cache can be local or online


Example 4.1 (Persistent Memoization in GAP/python).

Persistent Memoization in Python and GAP

Persistent Memoization in Python and GAP

Persistent Memoization in Python and GAP

Advantages

- Avoids re-running programs that are guaranteed to return the same answer
- Allows us to create an archive of results that can be used for other purposes
- Share results betweeen users, locations, and even programming languages

5 Recommendations, Deliverables, KPIs, Lessons

Recommendation 7. To develop a comic explaining the MitM approach.

- The comic has been published on: https://github.com/OpenDreamKit/ OpenDreamKit.github.io/blob/master/public/images/use-cases/MitM.png.
- It has already been used in the MitM use case description at https://opendreamkit.org/2018/05/16/lmfdb-usecase/, in conference presentations and posters.
- Recommendation 8. To disseminate the Adoption by Logipedia of the MitM principle of integrating (logical) systems by aligning concepts.
 - We have made a blog post about this, see https://opendreamkit.org/2019/01/24/logipedia/

						$\langle \rangle$
 All Deliverables were delivered 					(mostly on tin	ne)
	Task	Name	RP1	RP2	RP3	
	T6.1	Search				
	T6.2	Survey	D6.1			
	T6.3	DKS-Design	D6.2 D6.3			
	T6.4-8	Case Studies		D6.5 D6.8		
	T6.9	Memoization			D6.9	
	T6.10	Math Search			D6.10	
	T6.11	Isabelle Lib			D6.11	
All Delive	Task T6.1 T6.2 T6.3 T6.4-8 T6.9 T6.10	Name Search Survey DKS-Design Case Studies Memoization Math Search	D6.1	*	RP3 D6.9 D6.10	ne

KPIs and Deliverables for WP6

- The Math-in-the-Middle Ontology
 - MitM-connected Systems: four (GAP, Sage, LMFDB, Singular)
 - Formal MitM Ontology: 60 files, 3000 LoF, 500 commits
 - Informal MitM Ontology: 900 theories, 1900 concepts in English, German, (Chinese, Romanian)
 - MitM System API Theories (GAP, Sage, LMFDB, Singular): 1.000+ Theories, 22.000 Concepts.
 - Isabelle Library: > 10⁵ lemmas, > 10⁶ loc
 - Heavy interest by the theorem proving community about MitM Ontology
 - Logipedia (http://logipedia.science) adopts the MitM principle of integrating (logical) systems by aligning concepts.

(largely unchanged from last time)

(See D6.5)

(See D6.8)

KPIs and Deliverables for WP6

- The Math-in-the-Middle Ontology
 - MitM-connected Systems: four (GAP, Sage, LMFDB, Singular)
 - Formal MitM Ontology: 60 files, 3000 LoF, 500 commits
 - Informal MitM Ontology: 900 theories, 1900 concepts in English, German, (Chinese, Romanian)
 - MitM System API Theories (GAP, Sage, LMFDB, Singular): 1.000+ Theories, 22.000 Concepts.
 - Isabelle Library: $> 10^5$ lemmas, $> 10^6$ loc
 - Heavy interest by the theorem proving community about MitM Ontology
 - Logipedia (http://logipedia.science) adopts the MitM principle of integrating (logical) systems by aligning concepts.
- MathHub

(Front-End re-implemented 2018/19)

(largely unchanged from last time)

(See D6.5)

(See D6.8)

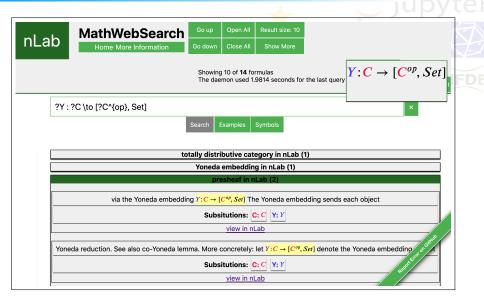
▶ 327 archives \sim 61*GB*; 25 archives in web UI; \sim 2.5*GB*

KPIs and Deliverables for WP6

- The Math-in-the-Middle Ontology
 - MitM-connected Systems: four (GAP, Sage, LMFDB, Singular)
 - Formal MitM Ontology: 60 files, 3000 LoF, 500 commits
 - Informal MitM Ontology: 900 theories, 1900 concepts in English, German, (Chinese, Romanian)
 - MitM System API Theories (GAP, Sage, LMFDB, Singular): 1.000+ Theories, 22.000 Concepts.
 - Isabelle Library: $> 10^5$ lemmas, $> 10^6$ loc
 - Heavy interest by the theorem proving community about MitM Ontology
 - Logipedia (http://logipedia.science) adopts the MitM principle of integrating (logical) systems by aligning concepts.
- MathHub
 - 327 archives \sim 61*GB*; 25 archives in web UI; \sim 2.5*GB*
- MathHub Data
 - ▶ 12*M* Math Objects with \sim 15 properties, \sim 80*GB* in DB.
 - ▶ 4/6 data sets provided externally (four groups/researchers).

(Front-End re-implemented 2018/19)

(largely unchanged from last time)


(See D6.5)

(See D6.8)

(new, since August 2019)

Come to the MathWebSearch Data (n-Category Lab)

Lessons Learnt: WP6 (Data/Knowledge/Software)-Bases

- Generally: OpenDreamKit was a tremendous opportunity to rethink Math Software Infrastructure
 - Freedom to think/conceptualize/prototype/evaluate/scale for 4 years
 - A common non-trivial infrastructure goal to evaluate

(VRE toolkit)

Lessons Learnt: WP6 (Data/Knowledge/Software)-Bases

- Generally: OpenDreamKit was a tremendous opportunity to rethink Math Software Infrastructure
 - Freedom to think/conceptualize/prototype/evaluate/scale for 4 years
 - A common non-trivial infrastructure goal to evaluate
- Problems Encountered: with taking the high road for system integration
 - MitM takes a large initial investment per system (Framework + mediator exist now)
 - mediator-based translation is relatively slow (but compilation possible)
 - correct/complete translations are possible by traditional programming (by trained mathematicians)
 - break-even point seems near 4 systems connected $(n^2 n \text{ vs. } 2n \text{ translations})$

(VRE toolkit)

Lessons Learnt: WP6 (Data/Knowledge/Software)-Bases

- Generally: OpenDreamKit was a tremendous opportunity to rethink Math Software Infrastructure
 - Freedom to think/conceptualize/prototype/evaluate/scale for 4 years
 - A common non-trivial infrastructure goal to evaluate
- Problems Encountered: with taking the high road for system integration
 - MitM takes a large initial investment per system (Framework + mediator exist now)
 - mediator-based translation is relatively slow (but compilation possible)
 - correct/complete translations are possible by traditional programming (by trained mathematicians)
 - break-even point seems near 4 systems connected $(n^2 n \text{ vs. } 2n \text{ translations})$
- Fewer Problems encountered: for semantic mathematical data
 - semantic description of the dataset is a reasonable investment (Schema theories + JSON + Provenance)
 - BUT author gets a turnkey solution for their data sets! (first digitization)
 - AND the dataset is MitM-enabled. (both intra-MDH and with CAS)

OpenDreamKit Follow-Up Proposal: FAIRMat

- Call: European Research Infrastructures: Implementing the European Open Science Cloud (Deadline 29. 1. 2019)
- FAIRMat: FAIR Mathematical Data for the European Open Science Cloud
 - FAU Erlangen-Nürnberg (coordinator)
 - Univesité Paris Sud
 - Chalmers University of Technology
 - Univerza v Ljubljani
 - CAE Tech Limited
 - FIZ Karlsruhe Leibniz Institute for Information Infrastructure
 - European Mathematical Society

Work Areas:

- ► WP2: Standardized data representation framework
- ► WP3: Mathematical Services for the EOSC
- WP4: Data Sets for EOSC
- WP5: Community Building
- Result: Cleared eligibility threshold well, not funded

(e.g. search, programmatic APIs) (Combinatorics, Algebra, Modelling)

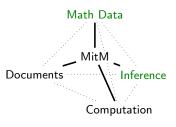
(deep FAIR)

Conclusion: What are we doing in WP6 in terms of a VRE

- SageMath and WP6 approach (Math-in-the-Middle; MitM) are both attempts at making a VRE Toolkit.
- SageMath is very successful, because integration is lightweight:
 - It makes no assumption on the meaning of math objects exchanged.
 - Restricts itself to master-slave integration of systems into SageMath. But there are safety, extensibility, and flexibility issues!

Conclusion: What are we doing in WP6 in terms of a VRE

- SageMath and WP6 approach (Math-in-the-Middle; MitM) are both attempts at making a VRE Toolkit.
- SageMath is very successful, because integration is lightweight:
 - It makes no assumption on the meaning of math objects exchanged.
 - Restricts itself to master-slave integration of systems into SageMath. But there are safety, extensibility, and flexibility issues!
- MitM tries to take the high road (make possible by OpenDreamKit)
 - Safety: by semantic (i.e. context-aware) objects passed.
 - Extensibility: any open-API system (i.e. with API CDs) can play.
 - ► Flexibility: full peer-to-peer possibilities. (future: service discovery)


But we have to develop a whole new framework!

(prototyped it)

Conclusion: What are we doing in WP6 in terms of a VRE

- SageMath and WP6 approach (Math-in-the-Middle; MitM) are both attempts at making a VRE Toolkit.
- SageMath is very successful, because integration is lightweight:
 - It makes no assumption on the meaning of math objects exchanged.
 - Restricts itself to master-slave integration of systems into SageMath. But there are safety, extensibility, and flexibility issues!
- MitM tries to take the high road (make possible by OpenDreamKit)
 - Safety: by semantic (i.e. context-aware) objects passed.
 - Extensibility: any open-API system (i.e. with API CDs) can play.
 Flexibility: full peer-to-peer possibilities. (future: service discovery)
 - Flexibility: full peer-to-peer possibilities. But we have to develop a whole new framework!
- Review Period3: Inference & Math Data
 - integrated Isabelle Library into MitM
 - Semanticizing LMFDB
 - Persistent Memoization
 - MathHub Data \rightsquigarrow FAIR

(prototyped it)