Workpackage 5:RB High Performance Mathematical Computing

First OpenDreamKit Project review

Brussels, April 26, 2017

Clément Pernet: Workpackage 5 1 Brussels, April 26, 2017

High performance mathematical computing

Computer algebra

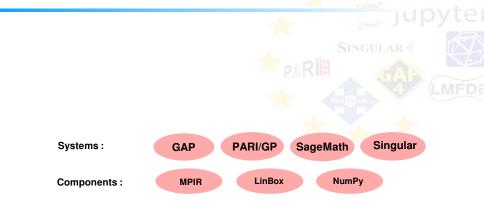
Typical computation domains:

- $\mathbb{Z}, \mathbb{Q}: \rightsquigarrow$ multiprecision integers
- ▶ $\mathbb{Z}/p\mathbb{Z}, \mathbb{F}_q$: \rightsquigarrow machine ints or floating point, multiprecision
- $K[X], K^{m \times n}, K[X]^{m \times n}$ for $K = \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

High performance computing

- Decades of development for numerical computations
- Still at an early development stage for computer algebra
- Specificites: cannot blindly benefit from numerical HPC experience

Goal: delivering high performance to maths users



3

Goal: delivering high performance to maths users

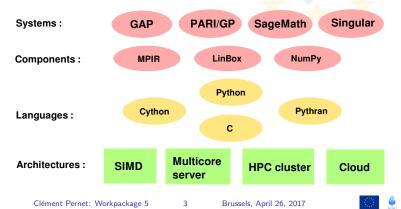
- Harnessing modern hardware \rightsquigarrow parallelisation
- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud

Goal: delivering high performance to maths users

Languages

- Computational Maths software uses high level languages (e.g. Python)
- High performance delivered by languages close to the metal (C, assembly)

 \rightsquigarrow compilation, automated optimisation



Outline

Main tasks under review for the period

Task 5.4: Singular Task 5.5: MPIR Task 5.6: Combinatorics Task 5.7: Pythran Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

Singular: A computer algebra system for polynomial computations.

- Already has a generic parallelization framework
- Focus on optimising kernel routines for fine grain parallelism
- D5.6: Quadratic sieving for integer factorization
- D5.7: Parallelization of matrix fast Fourier Transform

D5.6: Quadratic Sieving for integer factorization

Quadratic Sieving for integer factorization

Problem: Factor an integer n into prime factors

Role: Crucial in algebraic number theory, arithmetic geometry.

Earlier status: no HPC implementation for large instances:

- only fast code for up to 17 digits,
- only partial sequential implementation for large numbers

D5.6: Quadratic Sieving for integer factorization

Achievements

- Completed and debugged implementation of large prime variant
- Parallelised sieving component of implementation using OpenMP
- Experimented with a parallel implementation of Block Wiedemann algorithm

Results

▶ Now modern, robust, parallel code for numbers in 17–90 digit range

D5.6: Quadratic Sieving for integer factorization

Achievements

- Completed and debugged implementation of large prime variant
- Parallelised sieving component of implementation using OpenMP
- Experimented with a parallel implementation of Block Wiedemann algorithm

Results

- ▶ Now modern, robust, parallel code for numbers in 17–90 digit range
- Significantly faster on small multicore machines

Digits	50	60	70	80	90
Speedup	$ $ 1.1 \times	1.76 imes	1.55 imes	2.69×	2.80×

Table: Speedup for 4 cores (c/f single core):

D5.7: Parallelise and assembly optimise FFT

FFT: Fast Fourier Transform over $\mathbb{Z}/p\mathbb{Z}$

- Among the top 10 most important algorithms
- Key to fast arithmetic (integers, polynomials)
- Difficult to optimise: high memory bandwidth requirement

Earlier status:

- world leading sequential code in MPIR and FLINT;
- no parallel code.

D5.7: Parallelise and assembly optimise FFT

Achievements

- Parallelised Matrix Fourier implementation using OpenMP
- Assembly optimised butterfly operations in MPIR

Results:

- ho~pprox 15% speedup on Intel Haswell
- pprox 20% speedup on Intel Skylake
- Significant speedups on multicore machines

Table: Speedup of large integer multiplication on 4/8 cores:

Digits	3M	10M	35M	125M	700M	3.3B	14B
			-	2.92×			
8 cores	1.35×	3.56×	4.22×	4.36×	4.50×	4.31×	5.49×

MPIR : a library for big integer arithmetic

Bignum operations: fundamental across all of computer algebra

D5.5: Assembly superoptimisation

- ► MPIR contains assembly language routines for bignum operations ~→ hand optimised for every new microprocessor architecture ~→≈ 3 - 6 months of work for each architecture
- Superoptimisation: rearranges instructions to get optimal ordering Earlier status:
 - No assembly code for recent (> 2012) Intel and AMD chips (Bulldozer, Haswell, Skylake, ...)

Achievements

- A new assembly superoptimiser supporting recent instruction sets
- Superoptimised handwritten assembly code for Haswell and Skylake
- Hand picked faster assembly code for Bulldozer from existing implementations

Results:

- Sped up basic arithmetic operations for Bulldozer, Skylake and Haswell
- Noticeable speedups for bignum arithmetic for all size ranges

Op	Mul (s)	Mul (m)	Mul (b)	GCD (s)	GCD (m)	GCD (b)
Haswell	1.18 imes	1.27 imes	1.29 imes	0.72×	1.45 imes	1.27 imes
Skylake	1.15 imes	1.20 imes	$1.22 \times$	0.84 imes	1.65 imes	$1.32 \times$
s = 512 bits, m = 8192 bits, big = 100K bits						
	Clément Pernet:	Workpackage 5	11	Brussels, April 26, 2	2017	(2)

Perform a map/reduce on huge recursive datasets.

Large range of intensive applications in combinatorics:

- Test a conjecture: i.e. find an element of S satisfying a specific property
- ► Count/list the elements of *S* having this property

Perform a map/reduce on huge recursive datasets.

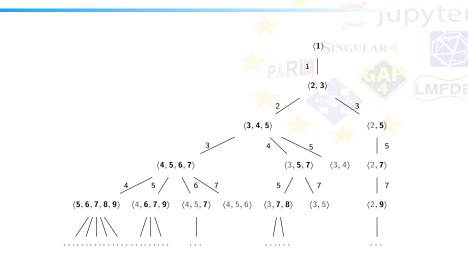
Large range of intensive applications in combinatorics:

- ► Test a conjecture: i.e. find an element of *S* satisfying a specific property
- ► Count/list the elements of *S* having this property

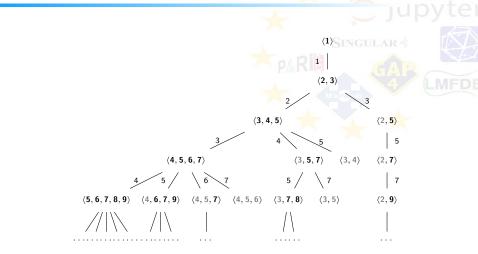
Specificities of combinatorics:

- Sets often don't fit in the computer's memory / disks and are enumerated on the fly (example of value: 10¹⁷ bytes).
- **Embarassingly parallel**, if the set is flat (a list, a file, stored on a disk).
- Recursive data-structures may be heavily unbalanced

A Challenge: The tree of numerical semigroups



A Challenge: The tree of numerical semigroups



Need for

- an efficient load balancing algorithm.
- a high level task parallelization framework.

Clément Pernet: Workpackage 5

A Python implementation

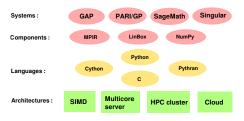
- Work stealing algorithm (Leiserson-Blumofe / Cilk)
- Easy to use, easy to call from SageMath
- Already, a dozen use cases
- Scale well with the number of CPU cores
- Reasonably efficient (knowing that this is Python code).

# processors	1	2	4	8
Time (s)	250	161	103	87

References

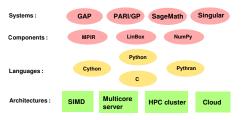
- Trac Ticket 13580 http://trac.sagemath.org/ticket/13580
- Exploring the Tree of Numerical Semigroups J. Fromentin and F. Hivert

Pythran: a NumPy-centric Python to C compiler



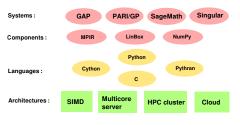
- Many high level VREs rely on the Python language
- High performance is most often achieved by the C language

Pythran: a NumPy-centric Python to C compiler



- Many high level VREs rely on the Python language
- High performance is most often achieved by the C language
 - Python to C compilers: Cython: general purpose Pythran: narrower scope, better at optimising Numpy code (Linear algebra)

Pythran: a NumPy-centric Python to C compiler

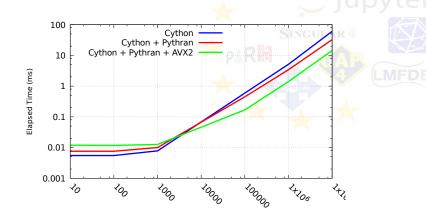


- Many high level VREs rely on the Python language
- High performance is most often achieved by the C language
- Python to C compilers:
 Cython: general purpose
 Pythran: narrower scope, better at optimising Numpy code (Linear algebra)

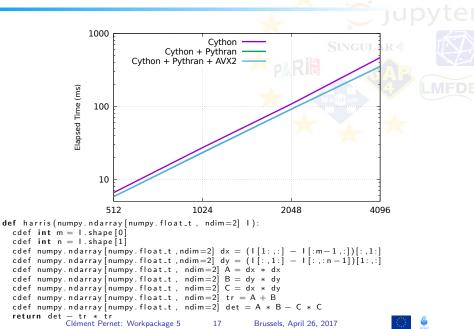
Goal: Implement the convergence

- D5.4 Improve Pythran typing system
- D5.2 Make Cython use Pythran backend to optimise Numpy code

D5.2: Make Cython use Pythran backend for NumPy code



D5.2: Make Cython use Pythran backend for NumPy code



Task 5.8: SunGridEngine integration in JupyterHub

Access to big compute

- Traditional access to supercomputers is difficult
- Notebooks are easy but run on laptops or desktops
- We need a way to connect notebooks to supercomputers

Sun Grid Engine

- A job scheduler for Academic HPC Clusters
- Controls how resources are allocated to researchers
- One of the most popular schedulers

Achievements: D5.3

- Developed software to run Jupyter notebooks on supercomputers
- Users don't need to know details. They just log in.
- Demonstration install at University of Sheffield Clément Pernet: Workpackage 5 18 Brussels. April 26. 2017

Outline

Main tasks under review for the period

Task 5.4: Singular Task 5.5: MPIR Task 5.6: Combinatorics Task 5.7: Pythran Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

T5.1: PARI

Generic parallelization engine is now mature, released (D5.10, due M24)

T5.2: GAP

- ▶ 6 releases were published integrating contributions of D3.11 and D5.15
- Build system refactoring for integration of HPC GAP

T5.3: LinBox

- Algorithmic advances (5 articles) on linear algebra and verified computing
- Software releases and integration into SageMath

Sites involved: UPSud, CNRS, UJF, UNIKL, USFD, USTAN, Logilab Workforce: 49.58 PM (consumed) / 200 PM (total)

Delivered: 7 deliverables

- Optimized parallel kernels: FFT, factorization, bignum arithmetic.
- New assembly superoptimizer supporting last generation CPUs
- Workstealing based task parallelization for combinatorics exploration
- Cython can use Pythran backend to compile Numpy Code
- Jupyter can be run on Cluster nodes using SunGridEngine scheduler

