Workpackage 5:
High Performance Mathematical Computing

Clément Pernet

First OpenDreamKit Project review

Brussels, April 26, 2017

Clément Pernet: Workpackage 5 1 Brussels, April 26, 2017 _ (]

High performance mathematical computing

Computer algebra

Typical computation domains:

> 7,Q: ~ multiprecision integers

» Z/pZ,Fq: ~> machine ints or floating point, multiprecision
» K[X], K™, K[X]™*" for K =7Z,Q,Z/pZ

High performance computing

» Decades of development for numerical computations
» Still at an early development stage for computer algebra
» Specificites: cannot blindly benefit from numerical HPC experience

Clément Pernet: Workpackage 5 2 Brussels, April 26, 2017 “ [4

Goal: delivering high performance to maths users

Systems : GAP PARI/GP SageMath Singular

Components : MPIR LinBox NumPy

Clément Pernet: Workpackage 5 3 Brussels, April 26, 2017 _]

Goal: delivering high performance to maths users

Harnessing modern hardware ~~ parallelisation

» in-core parallelism (SIMD vectorisation)
» multi-core parallelism
» distributed computing: clusters, cloud

Systems : GAP PARI/GP SageMath

Components : MPIR LinBox NumPy

Architectures: ~ gqp ~ Multicore ppe o cter
server

Clément Pernet: Workpackage 5 3 Brussels, April 26, 2017

Singular

Cloud

|

Goal: delivering high performance to maths users

Languages
» Computational Maths software uses high level languages (e.g. Python)
» High performance delivered by languages close to the metal (C, assembly)

~~ compilation, automated optimisation

Systems : GAP PARI/GP SageMath ~ Singular
Components : MPIR LinBox NumPy
Python

Languages : Cython Pythran

C
Architectures : SIMD AMUEETD HPC cluster Cloud

server
Brussels, April 26, 2017 B ¢

Clément Pernet: Workpackage 5 3

Outline

Main tasks under review for the period
Task 5.4: Singular
Task 5.5: MPIR
Task 5.6: Combinatorics
Task 5.7: Pythran

Task 5.8: SunGridEngine in JupyterHub

Clément Pernet: Workpackage 5 4

Brussels, April 26, 2017

Task 5.4: Singular

Singular: A computer algebra system for polynomial
computations.

» Already has a generic parallelization framework

» Focus on optimising kernel routines for fine grain parallelism

D5.6: Quadratic sieving for integer factorization

D5.7: Parallelization of matrix fast Fourier Transform

Clément Pernet: Workpackage 5 5 Brussels, April 26, 2017 “ L4

D5.6: Quadratic Sieving for integer factorization

Quadratic Sieving for integer factorization

Problem: Factor an integer n into prime factors
Role: Crucial in algebraic number theory, arithmetic geometry.
Earlier status: no HPC implementation for large instances:

» only fast code for up to 17 digits,
> only partial sequential implementation for large numbers

Clément Pernet: Workpackage 5 6 Brussels, April 26, 2017 n (]

D5.6: Quadratic Sieving for integer factorization

Achievements

» Completed and debugged implementation of large prime variant
> Parallelised sieving component of implementation using OpenMP

» Experimented with a parallel implementation of Block Wiedemann
algorithm

Results

» Now modern, robust, parallel code for numbers in 17-90 digit range

Clément Pernet: Workpackage 5 7 Brussels, April 26, 2017 “ []

D5.6: Quadratic Sieving for integer factorization

Achievements

» Completed and debugged implementation of large prime variant
> Parallelised sieving component of implementation using OpenMP

» Experimented with a parallel implementation of Block Wiedemann
algorithm

Results

» Now modern, robust, parallel code for numbers in 17-90 digit range

» Significantly faster on small multicore machines

Table: Speedup for 4 cores (c/f single core):

Digits | 50 60 70 80 90
Speedup | 1.1x 1.76x 1.55x 2.69x 2.80x

Clément Pernet: Workpackage 5 7 Brussels, April 26, 2017 “ []

D5.7: Parallelise and assembly optimise FFT

FFT: Fast Fourier Transform over Z/pZ

» Among the top 10 most important algorithms
» Key to fast arithmetic (integers, polynomials)
» Difficult to optimise: high memory bandwidth requirement
Earlier status:
» world leading sequential code in MPIR and FLINT;
» no parallel code.

Clément Pernet: Workpackage 5 8 Brussels, April 26, 2017

D5.7: Parallelise and assembly optimise FFT

Achievements

» Parallelised Matrix Fourier implementation using OpenMP

» Assembly optimised butterfly operations in MPIR

Results:

» ~ 15% speedup on Intel Haswell
» ~ 20% speedup on Intel Skylake

» Significant speedups on multicore machines

Table: Speedup of large integer multiplication on 4/8 cores:

Digits 3M 10M 35M 125M 700M 3.3B 14B

4 cores 1.35x 2.67x 2.92x 292x 3.01x 2.95x 3.32x
8 cores 1.35x 3.56x 4.22x 4.36x 450x 4.31x 5.49x

Clément Pernet: Workpackage 5 9 Brussels, April 26, 2017 “ [4

Task 5.5: MPIR

MPIR : a library for big integer arithmetic

» Bignum operations: fundamental across all of computer algebra

D5.5: Assembly superoptimisation

» MPIR contains assembly language routines for bignum operations
~> hand optimised for every new microprocessor architecture
~»22 3 — 6 months of work for each architecture

» Superoptimisation: rearranges instructions to get optimal ordering

Earlier status:

» No assembly code for recent (> 2012) Intel and AMD chips
(Bulldozer, Haswell, Skylake, ...)

Clément Pernet: Workpackage 5 10 Brussels, April 26, 2017 “ L 4

D5.5: Assembly superoptimisation

Achievements
> A new assembly superoptimiser supporting recent instruction sets
» Superoptimised handwritten assembly code for Haswell and Skylake

» Hand picked faster assembly code for Bulldozer from existing
implementations

Results:

» Sped up basic arithmetic operations for Bulldozer, Skylake and Haswell

> Noticeable speedups for bignum arithmetic for all size ranges

Op Mul (s) Mul (m) Mul (b) GCD (s) GCD (m) GCD (b)

Haswell 1.18x 1.27x 1.29x 0.72x 1.45x 1.27x
Skylake 1.15x 1.20x 1.22x 0.84x 1.65x 1.32x

s = 512 bits, m = 8192 bits, big = 100K bits

Clément Pernet: Workpackage 5 11 Brussels, April 26, 2017 “ L4

Task 5.6: Combinatorics

Perform a map/reduce on huge recursive datasets.

Large range of intensive applications in combinatorics:

> Test a conjecture: i.e. find an element of S satisfying a specific property

» Count/list the elements of S having this property

Clément Pernet: Workpackage 5 12 Brussels, April 26, 2017 “ (]

Task 5.6: Combinatorics

Perform a map/reduce on huge recursive datasets.

Large range of intensive applications in combinatorics:

> Test a conjecture: i.e. find an element of S satisfying a specific property

» Count/list the elements of S having this property

Specificities of combinatorics:

» Sets often don't fit in the computer’s memory / disks and are
enumerated on the fly (example of value: 107 bytes).
» Embarassingly parallel, if the set is flat (a list, a file, stored on a disk).

» Recursive data-structures may be heavily unbalanced

Clément Pernet: Workpackage 5 12 Brussels, April 26, 2017 “ []

A Challenge: The tree of numerical semigroups

(1)
o
(2,3)
1 e
(3,4,5) (2,5)
ER N E
(4,5,6,7) (3,5,7) (3,4) (2,7)
s/ NN s/ \7 K
(5,6,7,8,9) (4,6,7,9) (4,5,7) (4,5,6) (3,7,8) (3,5) (2,9)

AN A !

Clément Pernet: Workpackage 5 13 Brussels, April 26, 2017 -]

A Challenge: The tree of numerical semigroups

(1)
]
(2,3)
2 WL
(3,4,5) (2,8)
/ 4\\\ ‘5
(4,5,6,7) (3,5,7) (3,4) (2,7)
25/ NN 5/ * K
(5,6,7,8,9) (4,6,7,9) (4,5,7) (4,5,6) (3,7,8) (3,5) (2,9)

AN /N A |
Need for
» an efficient load balancing algorithm.
> a high level task parallelization framework.

Clément Pernet: Workpackage 5 13 Brussels, April 26, 2017 _]

Work-Stealing System Architecture

A Python implementation

v

Work stealing algorithm (Leiserson-Blumofe / Cilk)

v

Easy to use, easy to call from SageMath

v

Already, a dozen use cases

Scale well with the number of CPU cores

v

v

Reasonably efficient (knowing that this is Python code).

processors‘ 1 2 4 8
Time (s) | 250 161 103 87

References

> Trac Ticket 13580 http://trac.sagemath.org/ticket/13580

» Exploring the Tree of Numerical Semigroups J. Fromentin and F. Hivert

Clément Pernet: Workpackage 5 14 Brussels, April 26, 2017

http://trac.sagemath.org/ticket/13580

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

» Many high level VREs rely on the
Python language

Systems : GAP PARI/GP SageMath Singular
» High performance is most often
Components : MPIR LinBox NumPy .
achieved by the C language
Python
Languages ; Cython Pythran
c
Architectures : SIMD Multicore HPC cluster Cloud
server

Clément Pernet: Workpackage 5 15 Brussels, April 26, 2017 “ []

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

Systems :

Components :

Languages :

Architectures :

GAP PARI/GP SageMath Singular
MPIR LinBox NumPy
Python
Cython Pythran
c
simp Multicore ypc iyuster Cloud

server

Clément Pernet: Workpackage 5 15

» Many high level VREs rely on the

Python language

» High performance is most often

achieved by the C language

» Python to C compilers:
Cython: general purpose

Pythran: narrower scope, better
at optimising Numpy code

(Linear algebra)

Brussels, April 26, 2017

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

» Many high level VREs rely on the
Python language

Systems : GAP PARI/GP SageMath Singular s .
» High performance is most often
Components : MPIR LinBox NumPy .
achieved by the C language
Python
Languages Oython Pytran > Python to C compilers:
c
Cython: general purpose
Architectures: gip ~ Multicore ypn e Cloud

server Pythran: narrower scope, better
at optimising Numpy code
(Linear algebra)
Goal: Implement the convergence
D5.4 Improve Pythran typing system
D5.2 Make Cython use Pythran backend to optimise Numpy code

Clément Pernet: Workpackage 5 15 Brussels, April 26, 2017 “ L4

D5.2: Make Cython use Pythran backend for NumPy code

100 T T T T T

Cython
Cython + Pythran
10 b Cython + Pythran + AVX2 ———

Elapsed Time (ms)

001 ————— — ——~ E

0.001 p |J |\} I\) . .
o Q Q Q
(4 (27} %

import numpy
cimport numpy
def float_comp (numpy.ndarray[numpy.float_t, ndim=1] a,
numpy.ndarray [numpy. float_t , ndim=1] b):
return numpy.sum(numpy.sqrt (axat+bxb))

Clément Pernet: Workpackage 5 16 Brussels, April 26, 2017 -]

D5.2: Make Cython use Pythran backend for NumPy code

1000 T T
Cython
Cython + Pythran
Cython + Pythran + AVX2 ———
)
E
4“§’ 100
=
°
1
a
8
w
10
1 1
512 1024 2048 4096
def harris(numpy.ndarray [numpy. float_t, ndim=2] 1):
cdef int m = |.shape[0]
cdef int n = |.shape[1]

cdef numpy.ndarray [numpy. float_t ,ndim=2] dx
cdef numpy.ndarray [numpy. float_t ,ndim=2] dy
cdef numpy.ndarray [numpy. float_t, ndim=2] A
cdef numpy.ndarray [numpy. float_t , ndim=2] B
cdef numpy.ndarray [numpy. float_t , ndim=2] C
cdef numpy.ndarray [numpy. float_t , ndim=2] tr
cdef numpy.ndarray [numpy. float_t, ndim=2] det = A « B— C %= C

return det — tr x tr
Clément Pernet: Workpackage 5 17 Brussels, April 26, 2017 -

Task 5.8: SunGridEngine integration in JupyterHub

Access to big compute

» Traditional access to supercomputers is difficult
» Notebooks are easy but run on laptops or desktops

» We need a way to connect notebooks to supercomputers

Sun Grid Engine
A job scheduler for Academic HPC Clusters
» Controls how resources are allocated to researchers

» One of the most popular schedulers

Achievements: D5.3

> Developed software to run Jupyter notebooks on supercomputers
> Users don't need to know details. They just log in.

» Demonstration install at University of Sheffield

Clément Pernet: Workpackage 5 18 Brussels, April 26, 2017 “ []

Outline

Progress report on other tasks

Clément Pernet: Workpackage 5 19 Brussels, April 26, 2017

Progress report on other tasks

T5.1: PARI

> Generic parallelization engine is now mature, released (D5.10, due M24)

T5.2: GAP

> 6 releases were published integrating contributions of D3.11 and D5.15
» Build system refactoring for integration of HPC GAP

T5.3: LinBox

» Algorithmic advances (5 articles) on linear algebra and verified computing

» Software releases and integration into SageMath

Clément Pernet: Workpackage 5 20 Brussels, April 26, 2017 “ []

WP5 highlights

Sites involved: UPSud, CNRS, UJF, UNIKL, USFD, USTAN, Logilab
Workforce: 49.58 PM (consumed) / 200 PM (total)

Delivered: 7 deliverables

v

Optimized parallel kernels: FFT, factorization, bignum arithmetic.

v

New assembly superoptimizer supporting last generation CPUs

v

Workstealing based task parallelization for combinatorics exploration

v

Cython can use Pythran backend to compile Numpy Code
> Jupyter can be run on Cluster nodes using SunGridEngine scheduler

Clément Pernet: Workpackage 5 21 Brussels, April 26, 2017 “ []

	Main tasks under review for the period
	Task 5.4: Singular
	Task 5.5: MPIR
	Task 5.6: Combinatorics
	Task 5.7: Pythran
	Task 5.8: SunGridEngine in JupyterHub

	Progress report on other tasks

