
Workpackage 5:
High Performance Mathematical Computing

Clément Pernet

First OpenDreamKit Project review

Brussels, April 26, 2017

Clément Pernet: Workpackage 5 1 Brussels, April 26, 2017

High performance mathematical computing

Computer algebra

Typical computation domains:

I Z,Q: multiprecision integers

I Z/pZ,Fq: machine ints or floating point, multiprecision

I K [X],Km×n, K [X]m×n for K = Z,Q,Z/pZ

High performance computing

I Decades of development for numerical computations

I Still at an early development stage for computer algebra

I Specificites: cannot blindly benefit from numerical HPC experience

Clément Pernet: Workpackage 5 2 Brussels, April 26, 2017

Goal: delivering high performance to maths users

Harnessing modern hardware parallelisation

I in-core parallelism (SIMD vectorisation)

I multi-core parallelism

I distributed computing: clusters, cloud

LinBoxMPIR

Python

Pythran

C

NumPy

Cloud
Multicore
server

HPC cluster

Systems :

Components :

SageMath SingularGAP PARI/GP

Clément Pernet: Workpackage 5 3 Brussels, April 26, 2017

Goal: delivering high performance to maths users

Harnessing modern hardware parallelisation

I in-core parallelism (SIMD vectorisation)

I multi-core parallelism

I distributed computing: clusters, cloud

LinBoxMPIR

Python

Pythran

C

NumPy

Cloud
Multicore
server

HPC clusterSIMD

Systems :

Components :

Architectures :

SageMath SingularGAP PARI/GP

Clément Pernet: Workpackage 5 3 Brussels, April 26, 2017

Goal: delivering high performance to maths users

Languages

I Computational Maths software uses high level languages (e.g. Python)

I High performance delivered by languages close to the metal (C, assembly)

 compilation, automated optimisation

LinBoxMPIR

Python

Cython Pythran

C

NumPy

Cloud
Multicore
server

HPC clusterSIMD

Systems :

Components :

Languages :

Architectures :

SageMath SingularGAP PARI/GP

Clément Pernet: Workpackage 5 3 Brussels, April 26, 2017

Outline

Main tasks under review for the period
Task 5.4: Singular
Task 5.5: MPIR
Task 5.6: Combinatorics
Task 5.7: Pythran
Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

Clément Pernet: Workpackage 5 4 Brussels, April 26, 2017

Task 5.4: Singular

Singular: A computer algebra system for polynomial
computations.

I Already has a generic parallelization framework

I Focus on optimising kernel routines for fine grain parallelism

D5.6: Quadratic sieving for integer factorization

D5.7: Parallelization of matrix fast Fourier Transform

Clément Pernet: Workpackage 5 5 Brussels, April 26, 2017

D5.6: Quadratic Sieving for integer factorization

Quadratic Sieving for integer factorization

Problem: Factor an integer n into prime factors

Role: Crucial in algebraic number theory, arithmetic geometry.

Earlier status: no HPC implementation for large instances:

I only fast code for up to 17 digits,
I only partial sequential implementation for large numbers

Clément Pernet: Workpackage 5 6 Brussels, April 26, 2017

D5.6: Quadratic Sieving for integer factorization

Achievements

I Completed and debugged implementation of large prime variant

I Parallelised sieving component of implementation using OpenMP

I Experimented with a parallel implementation of Block Wiedemann
algorithm

Results

I Now modern, robust, parallel code for numbers in 17–90 digit range

I Significantly faster on small multicore machines

Table: Speedup for 4 cores (c/f single core):

Digits 50 60 70 80 90

Speedup 1.1× 1.76× 1.55× 2.69× 2.80×

Clément Pernet: Workpackage 5 7 Brussels, April 26, 2017

D5.6: Quadratic Sieving for integer factorization

Achievements

I Completed and debugged implementation of large prime variant

I Parallelised sieving component of implementation using OpenMP

I Experimented with a parallel implementation of Block Wiedemann
algorithm

Results

I Now modern, robust, parallel code for numbers in 17–90 digit range

I Significantly faster on small multicore machines

Table: Speedup for 4 cores (c/f single core):

Digits 50 60 70 80 90

Speedup 1.1× 1.76× 1.55× 2.69× 2.80×

Clément Pernet: Workpackage 5 7 Brussels, April 26, 2017

D5.7: Parallelise and assembly optimise FFT

FFT: Fast Fourier Transform over Z/pZ

I Among the top 10 most important algorithms

I Key to fast arithmetic (integers, polynomials)

I Difficult to optimise: high memory bandwidth requirement

Earlier status:

I world leading sequential code in MPIR and FLINT;
I no parallel code.

Clément Pernet: Workpackage 5 8 Brussels, April 26, 2017

D5.7: Parallelise and assembly optimise FFT

Achievements

I Parallelised Matrix Fourier implementation using OpenMP

I Assembly optimised butterfly operations in MPIR

Results:

I ≈ 15% speedup on Intel Haswell

I ≈ 20% speedup on Intel Skylake

I Significant speedups on multicore machines

Table: Speedup of large integer multiplication on 4/8 cores:

Digits 3M 10M 35M 125M 700M 3.3B 14B

4 cores 1.35× 2.67× 2.92× 2.92× 3.01× 2.95× 3.32×
8 cores 1.35× 3.56× 4.22× 4.36× 4.50× 4.31× 5.49×

Clément Pernet: Workpackage 5 9 Brussels, April 26, 2017

Task 5.5: MPIR

MPIR : a library for big integer arithmetic

I Bignum operations: fundamental across all of computer algebra

D5.5: Assembly superoptimisation

I MPIR contains assembly language routines for bignum operations
 hand optimised for every new microprocessor architecture
 ≈ 3 − 6 months of work for each architecture

I Superoptimisation: rearranges instructions to get optimal ordering

Earlier status:

I No assembly code for recent (> 2012) Intel and AMD chips
(Bulldozer, Haswell, Skylake, . . .)

Clément Pernet: Workpackage 5 10 Brussels, April 26, 2017

D5.5: Assembly superoptimisation

Achievements

I A new assembly superoptimiser supporting recent instruction sets

I Superoptimised handwritten assembly code for Haswell and Skylake

I Hand picked faster assembly code for Bulldozer from existing
implementations

Results:

I Sped up basic arithmetic operations for Bulldozer, Skylake and Haswell

I Noticeable speedups for bignum arithmetic for all size ranges

Op Mul (s) Mul (m) Mul (b) GCD (s) GCD (m) GCD (b)

Haswell 1.18× 1.27× 1.29× 0.72× 1.45× 1.27×
Skylake 1.15× 1.20× 1.22× 0.84× 1.65× 1.32×

s = 512 bits, m = 8192 bits, big = 100K bits
Clément Pernet: Workpackage 5 11 Brussels, April 26, 2017

Task 5.6: Combinatorics

Perform a map/reduce on huge recursive datasets.

Large range of intensive applications in combinatorics:

I Test a conjecture: i.e. find an element of S satisfying a specific property

I Count/list the elements of S having this property

Specificities of combinatorics:

I Sets often don’t fit in the computer’s memory / disks and are
enumerated on the fly (example of value: 1017 bytes).

I Embarassingly parallel, if the set is flat (a list, a file, stored on a disk).

I Recursive data-structures may be heavily unbalanced

Clément Pernet: Workpackage 5 12 Brussels, April 26, 2017

Task 5.6: Combinatorics

Perform a map/reduce on huge recursive datasets.

Large range of intensive applications in combinatorics:

I Test a conjecture: i.e. find an element of S satisfying a specific property

I Count/list the elements of S having this property

Specificities of combinatorics:

I Sets often don’t fit in the computer’s memory / disks and are
enumerated on the fly (example of value: 1017 bytes).

I Embarassingly parallel, if the set is flat (a list, a file, stored on a disk).

I Recursive data-structures may be heavily unbalanced

Clément Pernet: Workpackage 5 12 Brussels, April 26, 2017

A Challenge: The tree of numerical semigroups

〈1〉

〈2, 3〉

〈3, 4, 5〉

〈4, 5, 6, 7〉

〈5, 6, 7, 8, 9〉

.

4

〈4, 6, 7, 9〉

.

5

〈4, 5, 7〉

. . .

6

〈4, 5, 6〉

7

3

〈3, 5, 7〉

〈3, 7, 8〉

.

5

〈3, 5〉

7

4

〈3, 4〉

5

2

〈2, 5〉

〈2, 7〉

〈2, 9〉

. . .

7

5

3

1

Need for

I an efficient load balancing algorithm.
I a high level task parallelization framework.

Clément Pernet: Workpackage 5 13 Brussels, April 26, 2017

A Challenge: The tree of numerical semigroups

〈1〉

〈2, 3〉

〈3, 4, 5〉

〈4, 5, 6, 7〉

〈5, 6, 7, 8, 9〉

.

4

〈4, 6, 7, 9〉

.

5

〈4, 5, 7〉

. . .

6

〈4, 5, 6〉

7

3

〈3, 5, 7〉

〈3, 7, 8〉

.

5

〈3, 5〉

7

4

〈3, 4〉

5

2

〈2, 5〉

〈2, 7〉

〈2, 9〉

. . .

7

5

3

1

Need for

I an efficient load balancing algorithm.
I a high level task parallelization framework.

Clément Pernet: Workpackage 5 13 Brussels, April 26, 2017

Work-Stealing System Architecture

A Python implementation

I Work stealing algorithm (Leiserson-Blumofe / Cilk)

I Easy to use, easy to call from SageMath

I Already, a dozen use cases

I Scale well with the number of CPU cores

I Reasonably efficient (knowing that this is Python code).

processors 1 2 4 8

Time (s) 250 161 103 87

References

I Trac Ticket 13580 http://trac.sagemath.org/ticket/13580

I Exploring the Tree of Numerical Semigroups J. Fromentin and F. Hivert

Clément Pernet: Workpackage 5 14 Brussels, April 26, 2017

http://trac.sagemath.org/ticket/13580

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

LinBoxMPIR

Python

Cython Pythran

C

NumPy

Cloud
Multicore
server

HPC clusterSIMD

Systems :

Components :

Languages :

Architectures :

SageMath SingularGAP PARI/GP

I Many high level VREs rely on the
Python language

I High performance is most often
achieved by the C language

I Python to C compilers:

Cython: general purpose
Pythran: narrower scope, better

at optimising Numpy code
(Linear algebra)

Goal: Implement the convergence

D5.4 Improve Pythran typing system

D5.2 Make Cython use Pythran backend to optimise Numpy code

Clément Pernet: Workpackage 5 15 Brussels, April 26, 2017

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

LinBoxMPIR

Python

Cython Pythran

C

NumPy

Cloud
Multicore
server

HPC clusterSIMD

Systems :

Components :

Languages :

Architectures :

SageMath SingularGAP PARI/GP

I Many high level VREs rely on the
Python language

I High performance is most often
achieved by the C language

I Python to C compilers:

Cython: general purpose
Pythran: narrower scope, better

at optimising Numpy code
(Linear algebra)

Goal: Implement the convergence

D5.4 Improve Pythran typing system

D5.2 Make Cython use Pythran backend to optimise Numpy code

Clément Pernet: Workpackage 5 15 Brussels, April 26, 2017

Task 5.7: Pythran

Pythran: a NumPy-centric Python to C compiler

LinBoxMPIR

Python

Cython Pythran

C

NumPy

Cloud
Multicore
server

HPC clusterSIMD

Systems :

Components :

Languages :

Architectures :

SageMath SingularGAP PARI/GP

I Many high level VREs rely on the
Python language

I High performance is most often
achieved by the C language

I Python to C compilers:

Cython: general purpose
Pythran: narrower scope, better

at optimising Numpy code
(Linear algebra)

Goal: Implement the convergence

D5.4 Improve Pythran typing system

D5.2 Make Cython use Pythran backend to optimise Numpy code

Clément Pernet: Workpackage 5 15 Brussels, April 26, 2017

D5.2: Make Cython use Pythran backend for NumPy code

 0.001

 0.01

 0.1

 1

 10

 100

 10
 100

 1000

 10000

 100000

 1x10 6

 1x10

E
la

p
se

d
 T

im
e
 (

m
s)

Cython
Cython + Pythran

Cython + Pythran + AVX2

import numpy
c i m p o r t numpy
def f l o a t c o m p (numpy . n d a r r a y [numpy . f l o a t t , ndim =1] a ,

numpy . n d a r r a y [numpy . f l o a t t , ndim =1] b) :
r e t u r n numpy . sum (numpy . s q r t (a∗a+b∗b))

Clément Pernet: Workpackage 5 16 Brussels, April 26, 2017

D5.2: Make Cython use Pythran backend for NumPy code

 10

 100

 1000

512 1024 2048 4096

E
la

p
se

d
 T

im
e
 (

m
s)

Cython
Cython + Pythran

Cython + Pythran + AVX2

def h a r r i s (numpy . n d a r r a y [numpy . f l o a t t , ndim =2] I) :
c d e f i n t m = I . shape [0]
c d e f i n t n = I . shape [1]
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] dx = (I [1 : , :] − I [: m− 1 , :]) [: , 1 :]
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] dy = (I [: , 1 :] − I [: , : n− 1]) [1 : , :]
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] A = dx ∗ dx
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] B = dy ∗ dy
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] C = dx ∗ dy
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] t r = A + B
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] d e t = A ∗ B − C ∗ C
r e t u r n d e t − t r ∗ t r

Clément Pernet: Workpackage 5 17 Brussels, April 26, 2017

Task 5.8: SunGridEngine integration in JupyterHub

Access to big compute

I Traditional access to supercomputers is difficult

I Notebooks are easy but run on laptops or desktops

I We need a way to connect notebooks to supercomputers

Sun Grid Engine

A job scheduler for Academic HPC Clusters

I Controls how resources are allocated to researchers

I One of the most popular schedulers

Achievements: D5.3

I Developed software to run Jupyter notebooks on supercomputers

I Users don’t need to know details. They just log in.

I Demonstration install at University of Sheffield
Clément Pernet: Workpackage 5 18 Brussels, April 26, 2017

Outline

Main tasks under review for the period
Task 5.4: Singular
Task 5.5: MPIR
Task 5.6: Combinatorics
Task 5.7: Pythran
Task 5.8: SunGridEngine in JupyterHub

Progress report on other tasks

Clément Pernet: Workpackage 5 19 Brussels, April 26, 2017

Progress report on other tasks

T5.1: PARI

I Generic parallelization engine is now mature, released (D5.10, due M24)

T5.2: GAP

I 6 releases were published integrating contributions of D3.11 and D5.15

I Build system refactoring for integration of HPC GAP

T5.3: LinBox

I Algorithmic advances (5 articles) on linear algebra and verified computing

I Software releases and integration into SageMath

Clément Pernet: Workpackage 5 20 Brussels, April 26, 2017

WP5 highlights

Sites involved: UPSud, CNRS, UJF, UNIKL, USFD, USTAN, Logilab

Workforce: 49.58 PM (consumed) / 200 PM (total)

Delivered: 7 deliverables

I Optimized parallel kernels: FFT, factorization, bignum arithmetic.

I New assembly superoptimizer supporting last generation CPUs

I Workstealing based task parallelization for combinatorics exploration

I Cython can use Pythran backend to compile Numpy Code

I Jupyter can be run on Cluster nodes using SunGridEngine scheduler

Clément Pernet: Workpackage 5 21 Brussels, April 26, 2017

	Main tasks under review for the period
	Task 5.4: Singular
	Task 5.5: MPIR
	Task 5.6: Combinatorics
	Task 5.7: Pythran
	Task 5.8: SunGridEngine in JupyterHub

	Progress report on other tasks

